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$ Instituto de Matemitica, Universidade Federal d o  Rio Grande d o  SUI, Caixa Postal 
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Abstract. We consider a d-dimensional electron gas in the presence of random potentials 
with Gaussian long-range correlations decaying with a power law We use the 
method of renormalised perturbation theory with dimensional regularisation and minimal 
subtraction to study the singular behaviour of a theory where the generating functional is 
the configurational average of the replicated vacuum amplitude. Calculations are carried 
out to one-loop order in a double expansion in E = 4 - d and U. We obtain a new long-range 
fixed point for cr < 0,  2u < E < cr that is unstable along one direction in parameter space 
and i t  is interpreted as describing the localisation transition at high dimensionality. From 
the solution of the RG equation we derive the scaling law for the conductivity. 

We study the singular behaviour of non-interacting electrons in d-dimensions, in 
the presence of random potentials V ( x )  with zero mean and Gaussian, long-range 
correlations: 

( V ( x ) V ( x ' ) ) =  W,S(X-x')+ WLIX-X'I-d-v (1) 
where the bracket indicates a configurational average. 

A similar kind of quenched randomness has been previously studied in magnetic 
systems (Weinrib and Halperin 1983), but for disordered electrons all investigations 
until now have been confined to short-range correlations, WL=O. The most salient 
result obtained in this case is the scaling theory for the localisation transition by 
Abrahams er a1 (1979), while other investigations have focused on the formulation of 
a Lagrangian field theory. After Wegner (1979) and Schaffer and Wegner (1980), most 
authors derived field theories that describe the ordered, insulating phase by mapping 
the localisation problem onto a nonlinear cT-model with non-compact symmetry. This 
ordered phase would be characterised by a non-vanishing order parameter of a 
complicated nature (McKane and Stone 1981), just as in an ordinary magnet the 
compact nonlinear cr-model describes the low temperature phase with non-vanishing 
magnetisation (Amit 1984). In the work by Efetov er a1 (1980) Grassmann anticommut- 
ing fields were used to represent the electrons, although the use of boson or fermion 
fields is immaterial in the absence of electron-electron interactions because scattering 
with random impurities does not mix frequencies. When Coulomb interactions are 
taken into account, it is essential to use anticommuting fields in the derivation of the 
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effective Lagrangian (Finkel'shtein 1983, 1984). Although the replica method was used 
all through this work to calculate the configurational averaged free energy, this can 
be avoided in the case of non-interacting electrons by using supersymmetry (or graded 
symmetry) methods to obtain the mapping to the nonlinear a-model (Zirnbauer 1986). 
In all these papers, renormalisation group calculations were performed at dimensional- 
ity d close to the critical value for the nonlinear a-model, d ,  = 2 .  

Along different lines, one of us (Theumann 1983) pointed out that the generating 
functional for a system of disordered electrons is just the configurational average of 
the replicated grand partition function, or vacuum amplitude at T = 0, (Z") ,  expressed 
as a functional integral over Grassmann fields in the n = 0 limit (Edwards 1975). The 
singular behaviour of this theory should describe the disordered, conducting phase, 
just as the cp4-theory of the n-vector model describes a ferromagnet for T z  T' (Amit 
1984). Renormalisation of the theory at d.= 2 +  E reproduced results analogous to the 
nonlinear a-model. 

In the present letter we follow a similar approach to study the properties of 
non-interacting electrons in the presence of impurities characterised by the long-range 
correlations of (1). By using the replica method we write the generating functional 
(Theumann 1983): 

(2') = 2" = { n D+:+a e(Ao+Al) ( 2 )  
a 

with 

x { dw do ' ;  + : ( k + q ,  w)+,(k,w)C + : , ( k ' - q ,  w')+a,(k' ,  (0') (4) 
a '  

and where +,(k ,  w )  is a complex Grassman variable, while the replica indices a, a' 
run from 1 to n. All correlation functions can be expanded in a diagrammatic series 
in powers of W, and W, with the unperturbed inverse propagator: 

TpL(k, w )  = f k 2  - Eo- w - i T  sgn(w) ( 5 )  
where E, is the bare Fermi energy, that in this problem plays the role of a negative 
'mass'. The use of anticommuting variables is not essential in dealing with non- 
interacting electrons but it satisfies the symmetry requirements for a fermion system 
and it is the correct formulation for further extensions to interacting particles. 

The perturbation expansion presents the usual divergencies that can be handled 
with the method of dimensional regularisation and renormalisation by minimal subtrac- 
tion of dimensional poles (Amit 1984). A dimensional analysis of (4) tells us that W, 
and W ,  have different dimensions [ W,] = A4-d and [ W,] = A4-d-u, for A an inverse 
length, so we would not have a single critical dimension at which the degree of 
divergence of the correlation functions are independent of the order of calculation in 
perturbation theory. A way out of this situation is to renormalise in a double expansion 
in E = 4 - d and a .  It has been shown in a previous paper (Theumann 1989), from now 
on referred to as I, how to achieve this double expansion within the context of 
dimensional regularisation in the case of the m-vector model, and the same method 
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of renormalisation by minimal subtraction will be followed here to first order in the 
loop expansion. 

We write w,= u S ~ 4  ' I  and wL= uL~4-"-" where K is the scale parameter with 
dimension of an inverse length and the U's are dimensionless couplings. Singular 
contributions occur only for the inverse propagator and the four-point vertex, and they 
can be read directly from I. They are: 

r,,(k, w ) = ~ ~ ~ ( ~ , w ) + K ~ ~ [ u ~ L " +  I / ~ L , ]  ( 6 )  

( 7 )  
We d o  not need in the present problem to consider the two-point function with 

one insertion r::, because the system is not driven to criticality by a vanishing mass 
term (McKane and Stone 1981). In the localisation problem criticality is a function 
of the disorder (coupling constants), and it will be described by the infrared unstable 
fixed points of the renormalised couplings (Theumann 1983). 

In ( 7 )  we indicate by I,, (L , )  dimensionless integrals with two (one) propagators 
and  with p long-range vertices, p = 0, 1 or  2. The surface S,  of the d-dimensional 
unit sphere is absorbed in the definition of the interactions. We obtain: 

r",( kl , k2,  4) = - K F  { + 2 u:Io+ 3 us ui 11 + ut I,} - K F-"q"{  u~ + UL uslo + ut TI}. 

where we call: 

e , = K - 2 ( E o + W + i 7 7 s g n W ) .  (9) 
In order to evaluate the singular contributions to r:o it is sufficient to consider the 
integrals at  zero external momenta; then 

The method proposed in I consists in minimally subtracting the dimensional poles 
in E and a, while terms of the type ( ( T I E )  must be considered 'regular' and d o  not 
need to be subtracted. This means that one  takes simultaneously the limits a+= 0 and  
E + 0, keeping constant the ratio a/ E.  

The evaluation of L,,(k, U )  is standard and  it gives: 

where E'  = E - pa and 

We notice first that, although we obtained a surprising dependence on the external 
momentum k at one-loop order, the dimensional pole is affected by an  extra factor at  
a and it gives a regular contribution that does not require a subtraction. We obtain 
for the singular contribution to the inverse propagator, from (6) and (11): 

&-U 

4 
-2i.rr(Eo+w)(U,+Ul)sgnw. (13) 

k 2  raaw, 
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In dealing with fermions it is essential to have a non-vanishing imaginary part in 
the propagator, no matter how small, in order to obtain the correct analytic properties. 
On the other hand we are free to renormalise at the value more convenient for w ;  then 
we choose w + Eo = O+ to obtain from (13): 

k 2  1 
2 7  

r,,(k,w)=--i-sgnw 

with 

( 1 5 )  
1 - = 2 4  Eo + w )( U, + U , )  + 0'. 
7 

The inverse propagator is now free of singularities and the field renormalisation 

We proceed now to the evaluation of the integrals in (10). The standard procedure 
constant keeps the value 2, = 1. 

now gives: 

I,, = B ( _d <) lo' dx, lo'-x' dx2 ( 1  - x, - x2) - I -pu '2  {-x,e, - ~ ~ e , , } - ~ ' / ~ .  
2 ' 2  

Then the singular part is independent of the value of 6, = (i/T) sgn w,  so far as it is 
finite to prevent infrared singularities. We obtain: 

From (14) and (17) we find that only the rbfg in (7) requires renormalisation; then 
we expand the coupling constants U s ,  UL in terms of dimensionless renormalised 
couplings A s ,  A,: 

Equation (18) gives for the p-functions, pi = [ K  dAi/drc],,, obtained by varying A i  
at constant-dimensional couplings { y}:  

pL= - ( E  - 0 ) A L  - 2AsAL- 2A:. 

The set of differential equations in (19) describe the flow of the couplings under 
a change of scale and they will be approximately solved by linearisation around the 
fixed points (FP) that satisfy P i ( A T  = 0). Recalling that, from ( l ) ,  the physical couplings 
can only take positive values, we obtain besides the trivial fixed point AZL = A &  = 0: 

1. short-range FP 

( 2 0 )  A *  -- A T L = O  4 4  

physical and unstable for d > 4; 
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2. long-range FP 

( E - u ) ( E - 2 u )  
ATL = 

2 u  

A T s =  -- 
2 u  

physical and unstable for u < 0 , 4 + l u l < d  <4+21ul. 
These results tell us that for negative (positive) values of U the system will have 

long-range (short-range) behaviour, as it would be predicted from ( 1 ) .  The stability 
was calculated from the solution of the linearised flow equations: 

where AL=AL-At  and Ao=AL+As-A*L-AZ. The solution of (22 )  close to the short- 
range FP in (20 )  gives: 

that is infrared unstable along U, for E < O .  
In the vicinity of the long-range FP we diagonalise (22 )  by introducing the potentials: 

V, = a,( A L +  As)  + uAL - 

a, = $ E  - 2 ~  * $ [ ( 3 ~  - 4 ~ ) ’ + 4 ( ~  - E ) ( &  - 2 ~ ) ] ” *  

+ C K ~ *  (24 )  

where the a, are the eigenvalues: 

(25 )  

with a+>O and a-<O. Then the long-range FP is also infrared unstable along one 
direction in the physical region 2 0  < E < U, U < 0. 

To give an interpretation to the previous results we first notice that precisely these 
two fixed points have been discarded by Weinrib and Halperin (1983) in their descrip- 
tion of the random ferromagnet. This is because in the magnetic transition criticality 
is a function of a relevant, thus unstable, temperature term, while the other potentials 
should flow to an attractive fixed-point value. 

On the other hand, we are studying here a non-interacting random electron system 
whose singular behaviour can only originate in the localisation transition. Now, in this 
transition the system is not driven to criticality by a vanishing temperature term but 
rather by a critical value of the disorder as measured by the variance in (1 ) .  It is then 
the potentials A s  and A L  that should have one direction of instability in parameter 
space. From (23 )  and (24 )  we obtain the following picture: (i) for U > 0 and E < 0 the 
singular behaviour would be of the short-range type and described by the approximate 
flow trajectories in (23); (ii) for U < 0 and U < E < 0, the short-range FP is physical but 
unstable along two directions, while the long-range FP is unphysical; (i i i)  for u < O  
and 2 u  < E < U there would be singular behaviour as described by the physical long- 
range FP with one direction of instability from (24 )  and (25) ,  while the short-range FP 

remains unstable along two directions. 
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The problem with this interpretation is that it would predict a localisation transition 
when d > 4 for short-range correlations with A L  = 0, which contradicts all known results 
in the field until now. To solve this puzzle we look at the one-loop correction to the 
DC conductivity: 

A u D C =  K dk dk 'k*k ' [  Us+ U ~ l k - k ' l " ] G ( k , O + ) G ( k ,  0-)G(k',O')G(k', 0-) 

(26) 
d - 2  I 

where G(k, w )  = K2r,A(k, w )  and, from (14), it depends only on Ikl. The angular 
integral in (26) gives a vanishing short-range contribution while the long-range integral 
is non-zero and proportional to U. 

As our renormalisation group calculation is performed to one-loop order, we argue 
consistently that the short-range FP in (20) that would give A(+&(sR) = 0 cannot be 
interpreted as describing localisation, in agreement with known results. On the other 
hand, the relevant long-range FP in (21) that gives Au&-(LR)#O would describe a 
localisation transition for 4 +  lul< d <4+21ul. 

In the vicinity of this fixed point we can write the renormalisation group equation 
for vDC: 

where, from (24) and calling A, = U, - u'f 

d 
dK 

p,  = K -  U * -  a+A. ,  . 

Solving (27) by the method of characteristics gives: 

1 (29) = @ [ K - l A l / " + ;  K - ' A 1 / u -  

where @(x, y )  is an arbitrary function of two variables. From (29) we can identify the 
correlation length: 

(30) 6 = K - l ~ L / ' -  = K - ' ( U _  - 

with the correlation length exponent Y-' = la-[, and from (29) we can write the scaling 
relation: 

UDc- pd@[~;/u+~:; 1 1 .  (31 )  

From (31) we obtain that close to the critical value U, of U- in (24) the DC conductivity 
will vanish as: 

(32) 
( d - 2 ) u  

(+DC - 10- - U,/ 
for 4 + l a l < d < 4 + 2 1 ~ 1 ,  ~ ( 0 .  
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